| dc.contributor.author | Kala, R. | en_US |
| dc.contributor.author | Kavitha, S. | en_US |
| dc.date.accessioned | 1399-07-09T11:37:10Z | fa_IR |
| dc.date.accessioned | 2020-09-30T11:37:10Z | |
| dc.date.available | 1399-07-09T11:37:10Z | fa_IR |
| dc.date.available | 2020-09-30T11:37:10Z | |
| dc.date.issued | 2015-06-01 | en_US |
| dc.date.issued | 1394-03-11 | fa_IR |
| dc.date.submitted | 2013-07-10 | en_US |
| dc.date.submitted | 1392-04-19 | fa_IR |
| dc.identifier.citation | Kala, R., Kavitha, S.. (2015). A typical graph structure of a ring. Transactions on Combinatorics, 4(2), 37-44. doi: 10.22108/toc.2015.6177 | en_US |
| dc.identifier.issn | 2251-8657 | |
| dc.identifier.issn | 2251-8665 | |
| dc.identifier.uri | https://dx.doi.org/10.22108/toc.2015.6177 | |
| dc.identifier.uri | http://toc.ui.ac.ir/article_6177.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/405707 | |
| dc.description.abstract | The zero-divisor graph of a commutative ring $R$ with respect to nilpotent elements is a simple undirected graph $Gamma_N^*(R)$ with vertex set $mathcal{Z}_N(R)^*$, and two vertices $x$ and $y$ are adjacent if and only if $xy$ is nilpotent and $xyneq 0$, where $mathcal{Z}_N(R)={xin R: xy~text{is nilpotent, for some} yin R^*}$. In this paper, we investigate the basic properties of $Gamma_N^*(R)$. We discuss when it will be Eulerian and Hamiltonian. We further determine the genus of $Gamma_N^*(R)$. | en_US |
| dc.format.extent | 259 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | University of Isfahan | en_US |
| dc.relation.ispartof | Transactions on Combinatorics | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.22108/toc.2015.6177 | |
| dc.subject | local ring | en_US |
| dc.subject | nilpotent | en_US |
| dc.subject | planar | en_US |
| dc.subject | Artinian ring | en_US |
| dc.subject | 05C10 Planar graphs; geometric and topological aspects of graph theory | en_US |
| dc.subject | 05C25 Graphs and abstract algebra (groups, rings, fields, etc.) | en_US |
| dc.subject | 05C99 None of the above, but in this section | en_US |
| dc.subject | 13A99 None of the above, but in this section | en_US |
| dc.title | A typical graph structure of a ring | en_US |
| dc.type | Text | en_US |
| dc.type | Research Paper | en_US |
| dc.contributor.department | Manonmaniam Sundaranar University | en_US |
| dc.contributor.department | Manonmaniam Sundaranar University | en_US |
| dc.citation.volume | 4 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 37 | |
| dc.citation.epage | 44 | |