A typical graph structure of a ring
(ندگان)پدیدآور
Kala, R.Kavitha, S.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
The zero-divisor graph of a commutative ring $R$ with respect to nilpotent elements is a simple undirected graph $Gamma_N^*(R)$ with vertex set $mathcal{Z}_N(R)^*$, and two vertices $x$ and $y$ are adjacent if and only if $xy$ is nilpotent and $xyneq 0$, where $mathcal{Z}_N(R)={xin R: xy~text{is nilpotent, for some} yin R^*}$. In this paper, we investigate the basic properties of $Gamma_N^*(R)$. We discuss when it will be Eulerian and Hamiltonian. We further determine the genus of $Gamma_N^*(R)$.
کلید واژگان
local ringnilpotent
planar
Artinian ring
05C10 Planar graphs; geometric and topological aspects of graph theory
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C99 None of the above, but in this section
13A99 None of the above, but in this section
شماره نشریه
2تاریخ نشر
2015-06-011394-03-11
ناشر
University of Isfahanسازمان پدید آورنده
Manonmaniam Sundaranar UniversityManonmaniam Sundaranar University
شاپا
2251-86572251-8665




