Graphs with fixed number of pendent vertices and minimal first Zagreb index
(ندگان)پدیدآور
Gutman, IvanJamil, MuhammadAkhter, Naveedنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
The first Zagreb index $M_1$ of a graph $G$ is equal to the sum of squares of degrees of the vertices of $G$. Goubko proved that for trees with $n_1$ pendent vertices, $M_1 geq 9,n_1-16$. We show how this result can be extended to hold for any connected graph with cyclomatic number $gamma geq 0$. In addition, graphs with $n$ vertices, $n_1$ pendent vertices, cyclomatic number $gamma$, and minimal $M_1$ are characterized. Explicit expressions for minimal $M_1$ are given for $gamma=0,1,2$, which directly can be extended for $gamma>2$.
کلید واژگان
degree (of vertex)Zagreb index
First Zagreb index
extremal graphs
05C07 Vertex degrees
05C10 Planar graphs; geometric and topological aspects of graph theory
05C35 Extremal problems
شماره نشریه
1تاریخ نشر
2015-03-011393-12-10
ناشر
University of Isfahanسازمان پدید آورنده
University of Kragujevac Kragujevac, SerbiaGovernment College University
Government College University
شاپا
2251-86572251-8665




