On the symmetries of some classes of recursive circulant graphs
(ندگان)پدیدآور
Mirafzal, Seyed Mortezaنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
A recursive-circulant $G(n; d)$ is defined to be a circulant graph with $n$ vertices and jumps of powers of $d$. $G(n; d)$ is vertex-transitive, and has some strong hamiltonian properties. $G(n;d)$ has a recursive structure when $n = cd^m$, $1 leq c Theoret. Comput. Sci. 244 (2000) 35-62]. In this paper, we will find the automorphism group of some classes of recursive-circulant graphs. In particular, we will find that the automorphism group of $G(2^m; 4)$ is isomorphic with the group $D_{2 cdot 2^m}$, the dihedral group of order $2^{m+1}$.
کلید واژگان
Cayley graphRecursive circulant
automorphism group
Dihedral group
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
94C15 Applications of graph theory
شماره نشریه
1تاریخ نشر
2014-03-011392-12-10
ناشر
University of Isfahanسازمان پدید آورنده
Lorestan Universityشاپا
2251-86572251-8665




