Some results on characterization of finite group by non commuting graph
(ندگان)پدیدآور
Darafsheh, Mohammad RezaYousefzadeh, Pedramنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
The non commuting graph $nabla(G)$ of a non-abelian finite group $G$ is defined as follows: its vertex set is $G- Z (G)$ and two distinct vertices $x$ and $y$ are joined by an edge if and only if the commutator of $x$ and $y$ is not the identity. In this paper we prove some new results about this graph. In particular we will give a new proof of Theorem 3.24 of [A. Abdollahi, S. Akbari, H. R, Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006) 468-492.]. We also prove that if $G_1, G_2, ldots, G_n$ are finite groups such that $Z(G_i)=1$ for $i=1, 2,ldots, n$ and they are characterizable by non commuting graph, then $G_1 times G_2 times cdots times G_n$ is characterizable by non-commuting graph.
کلید واژگان
non commuting graphNilpotent groups
Finite groups
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20D60 Arithmetic and combinatorial problems
شماره نشریه
2تاریخ نشر
2012-06-011391-03-12
ناشر
University of Isfahanسازمان پدید آورنده
University of TehranK. N. Toosi University of Technology
شاپا
2251-86572251-8665




