• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Desert
    • Volume 19, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Desert
    • Volume 19, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparison of M5 Model Tree and Artificial Neural Network for Estimating Potential Evapotranspiration in Semi-arid Climates

    (ندگان)پدیدآور
    Ghahreman, NozarSameti, Mahsa
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    134.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Evaporation is a fundamental parameter in the hydrological cycle. This study examines the performance of M5model tree and artificial neural network (ANN) models in estimating potential evapotranspiration calculated byPenman- Monteith and Hargreaves- Samani equations. Daily weather data from two meteorological stations in asemi-arid climate of Iran, namely Kerman and Zahedan, were collected during 1995-2004 and included the mean,maximum and minimum air temperatures, dewpoint, relative humidity, sunshine hours, and wind speed. Resultsfor both stations showed that the performance of the M5 model tree was more accurate (R=0.982 and 0.98 forPenman-Monteith equation and R=0.983 and 0.98 for Hargreaves-Samani equation in Kerman and Zahedan,respectively) than the ANN model (R=0.975 and 0.978 for Penman-Monteith equation and R=0.967 and 0.974 forHargreaves-Samani equation in Kerman and Zahedan, respectively), but the models' differences wereinsignificant at a confidence level of 95%. It also performed better at the Zahedan station using the Penman-Monteith equation. The most significant variables affecting the potential evapotranspiration in the case of thePenman–Monteith equation were found to be mean air temperature, sunshine hours, wind speed, and relativehumidity. Similarly, for the Hargreaves-Samani equation, the maximum and minimum temperatures, sunshinehours, and wind speed were determined to be the most significant variables. Further studies in other climates arerecommended for further analysis.
    کلید واژگان
    ANN
    Machine learning
    Penman-Monteith
    Hargreaves-Samani

    شماره نشریه
    1
    تاریخ نشر
    2014-01-01
    1392-10-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran
    Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran

    شاپا
    2008-0875
    475-2345X
    URI
    https://dx.doi.org/10.22059/jdesert.2014.51056
    https://jdesert.ut.ac.ir/article_51056.html
    https://iranjournals.nlai.ir/handle/123456789/393359

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب