• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Earth Observation and Geomatics Engineering
    • Volume 3, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Earth Observation and Geomatics Engineering
    • Volume 3, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Preparation of flood susceptibility mapping using an ensemble of frequency ratio and adaptive neuro-fuzzy inference system models

    (ندگان)پدیدآور
    Razavi Termeh, Seyed VahidSadeghi-Niaraki, Abolghasem
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.140 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Floods are among the most common natural disasters that impose severe financial and human losses every year. Therefore, it is necessary to prepare susceptibility and vulnerability maps for comprehensive flood management to reduce their destructive effects. This study is trying to provide a flood susceptibility mapping in Jahrom (Fars Province) using a combination of frequency ratio (FR) and adaptive neuro-fuzzy inference system (ANFIS) and compare their accuracy. Totally, 51 flood locations areas were identified, 35 locations of which were randomly selected to model flood susceptibility and the remaining 16 locations were used to validate the models. Nine flood conditioning factors namely: slope degree, plan curvature, altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, land use/land cover, rainfall, and lithology were selected, and the corresponding maps were prepared using ArcGIS. After preparing the flood susceptibility maps using these methods, the relative operating characteristic (ROC) curve was used to evaluate the results. The area under the curve (AUC) obtained from the ROC curve indicated the accuracy of 89% and 91.2% for the ensembles of FR and ANFIS-FR models, respectively. These results can be useful for managers, researchers, and designers in managing flood vulnerable areas and reducing their damages.
    کلید واژگان
    Flood susceptibility
    Frequency ratio (FR) model
    adaptive neuro-fuzzy inference system (ANFIS)
    Jahrom town
    Geographic Information System (GIS)
    GIS

    شماره نشریه
    1
    تاریخ نشر
    2019-06-01
    1398-03-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Geoinformation Tech, Center of Excellence, Faculty of Geomatics, K.N. Toosi University of Technology, Tehran, Iran
    Geoinformation Tech, Center of Excellence, Faculty of Geomatics, K.N. Toosi University of Technology, Tehran, Iran

    شاپا
    2588-4352
    2588-4360
    URI
    https://dx.doi.org/10.22059/eoge.2019.269239.1035
    https://eoge.ut.ac.ir/article_72828.html
    https://iranjournals.nlai.ir/handle/123456789/381701

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب