• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Geopersia
    • Volume 2, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Geopersia
    • Volume 2, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf

    (ندگان)پدیدآور
    Sfidari, EbrahimAmini, AbdolhosseinKadkhodaie, AliAhmadi, Bahman
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    811.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. This approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a practical electrofacies clustering. Porosity and permeability prediction is done on the basis of linear functions, succeeding the electrofacies clustering. At the start, an unsupervised neural network was employed based on the self-organizing map (SOM) technique to identify and extract electrofacies groups. No subdivision of the data set was required for the technique on account of the natural characters of the well logs that reflect lithological character of the formations. The second step was examining a supervised neural network which is designed based on the back propagation algorithm. This technique quantitatively predicts the porosity and permeability within the determined electrofacies. The final part of the study was calibration and comparison of the electrofacies clustering results with core and petrographic data. Based on the porosity and permeability maps at different depth levels, the target reservoir is classified into six electrofacies clusters (EF1-EF6) among which the EF5 and EF4 show the best reservoir quality.
    کلید واژگان
    Electrofacies
    Persian Gulf.
    Porosity/permeability prediction
    Self-organizing Maps
    South Pars gas field

    شماره نشریه
    2
    تاریخ نشر
    2012-12-01
    1391-09-11
    ناشر
    Tehran, University of Tehran Press
    سازمان پدید آورنده
    University of Tehran
    University of Tehran
    University of Tabriz
    University of Guilan, Rasht

    شاپا
    2228-7817
    2228-7825
    URI
    https://dx.doi.org/10.22059/jgeope.2012.29229
    https://geopersia.ut.ac.ir/article_29229.html
    https://iranjournals.nlai.ir/handle/123456789/369658

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب