• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Geopersia
    • Volume 1, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Geopersia
    • Volume 1, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A committee machine approach for predicting permeability from well log data: a case study from a heterogeneous carbonate reservoir, Balal oil Field, Persian Gulf

    (ندگان)پدیدآور
    Kadkhodaie, AliRafiei, BehrouzYosefpour, MohammadKhodabakhsh, Saeed
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    383.6کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Permeability prediction problem has been examined using several methods such as empirical formulas, regression analysis and intelligent systems especially neural networks and fuzzy logic. This study proposes an improved and novel model for predicting permeability from conventional well log data. The methodology is integration of empirical formulas, multiple regression and neuro-fuzzy in a committee machine. A committee machine, a new type of neural network, has a parallel structure in which each of the applied methods (experts) has a weight coefficient showing its contribution in overall prediction. The optimal combination of the weights is obtained by a genetic algorithm. The method is illustrated using a case study from a heterogeneous Upper Jurassic carbonate reservoir in Balal oil Field, Persian Gulf. For this purpose, one hundred fifty-one samples from the intervals comprising core and well log data were clustered into eighty-one training sets and seventy testing sets to evaluate the validity of the models developed. The results of this study show that the genetic algorithm optimized committee machine has provided more accurate results than each of individual experts used
    کلید واژگان
    Balal oil field
    committee machine
    Empirical formulas
    Multiple regression analysis
    neuro-fuzzy
    Permeability
    Persian Gulf

    شماره نشریه
    2
    تاریخ نشر
    2011-11-01
    1390-08-10
    ناشر
    Tehran, University of Tehran Press
    سازمان پدید آورنده
    University of Tabriz
    Geology Division, Iranian Offshore Oil Company/ NIOC, Tehran, Iran

    شاپا
    2228-7817
    2228-7825
    URI
    https://dx.doi.org/10.22059/jgeope.2011.23279
    https://geopersia.ut.ac.ir/article_23279.html
    https://iranjournals.nlai.ir/handle/123456789/369649

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب