• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی
    • دوره 8, شماره 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی
    • دوره 8, شماره 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    بررسی پتانسیل اراضی استان کرمانشاه جهت کشت گندم دیم با استفاده از شبکه عصبی مصنوعی

    (ندگان)پدیدآور
    باقری, میلادجلوخانی نیارکی, محمدرضاباقری, کیوان
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    5.839 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    مقاله پژوهشی
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    با افزایش روزافزون جمعیت و نیاز به مواد غذایی، گندم به­عنوان محصولی با بیشترین سطح زیر کشت و تولید سالانه در مقیاس جهانی از اهمیت ویژه‌ای برخوردار بوده است لذا شناسایی و معرفی مناطق مساعد کشت آن در هر منطقه ضروری است. استان کرمانشاه به‌عنوان محدوده مورد مطالعه یکی از مناطق حاصلخیزی است که بیشترین کشت گندم را در بین محصولات زراعی دارد. بدین منظور در این مطالعه از شبکه عصبی پرسپترون چندلایه (MLP) با الگوریتم آموزش لونبرگ- مارکوات جهت شناسایی و معرفی مناطق مساعد کشت گندیم دیم استفاده شد. لایه‌های ورودی شبکه شامل 12 لایه؛ کاربری اراضی، میانگین بارندگی سالانه، میانگین بارندگی فصل پاییز، میانگین بارندگی فصل بهار، میانگین دمای سالانه، میانگین دمای فصل بهار، میانگین دمای فصل پاییز، شیب، جهت شیب، ارتفاع از سطح دریا، رطوبت نسبی، درجه- روز است. لایه‌های مربوط به بارندگی و دما به ترتیب با استفاده از داده‌های ایستگاه‌های باران‌سنجی و سینوپتیک و عمل درون‌یابی در محیط ArcGIS تهیه شدند. لایه ­های وابسته به ارتفاع نیز با استفاده از DEM با قدرت تفکیک 30×30 متر IRS استخراج شدند. ابتدا به منظور تعیین فضای جست­وجو الگوریتم شبکه عصبی، مناطق غیر قابل کشت تعیین و از کل لایه‏های ورودی حذف گردید. 210 مکان مناسب کشت به عنوان نقاط آموزشی شبکه تهیه شد. در نهایت کلاس مناطق غیر قابل کشت که 15% و نتایج حاصل از مدل شامل پنج کلاس بسیار مساعد، مساعد، نسبتاً مساعد، نامساعد و بسیار نامساعد که به ترتیب 5/4، 14/8، 24، 22/5 و 18/3 درصد از کل مساحت استان را به خود اختصاص داده‌اند، تعیین شد. همچنین ضریب رگرسیون کلی 91 درصدی شبکه که حاصل شرکت کلیه داده در شبکه است، بیانگر کارای بالای شبکه عصبی پرسپترون چندلایه در این پهنه‌ بندی است.
    کلید واژگان
    گندم
    شبکه عصبی
    پهنه‌بندی
    پرسپترون چندلایه

    شماره نشریه
    4
    تاریخ نشر
    2018-02-20
    1396-12-01
    ناشر
    دانشگاه آزاد اسلامی واحد بوشهر
    Bushehr Branch, Islamic Azad University
    سازمان پدید آورنده
    دانشجوی کارشناسی ارشد سنجش از دور و GIS، دانشگاه تهران
    استادیار دانشکده جغرافیا، دانشگاه تهران
    دانشجوی دکتری سنجش از دور و GIS، دانشگاه تهران

    شاپا
    2676-7082
    2676-668X
    URI
    http://girs.iaubushehr.ac.ir/article_539087.html
    https://iranjournals.nlai.ir/handle/123456789/367464

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب