• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iran Agricultural Research
    • Volume 33, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iran Agricultural Research
    • Volume 33, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower

    (ندگان)پدیدآور
    JAFARI, A.BAKHSHIPOUR, A.HEMMATIAN, R.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    501.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Full Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    ABSTRACT-Manual harvesting of saffron as a laborious and exhausting job; it not only raises production costs, but also reduces the quality due to contaminations. Saffron quality could be enhanced if automated harvesting is substituted. As the main step towards designing a saffron harvester robot, an appropriate algorithm was developed in this study based on image processing techniques to recognize and locate saffron flowers in the field. Color features of the images in HSI and YCrCb color spaces were used to detect the flowers. High pass filters were used to eliminate noise from the segmented images. Partial occlusion of flowers was modified using erosion and dilation operations. Separated flowers were then labeled. The proposed flower harvester was to pick flowers using a vacuum snapper. Therefore, the center of the flower area was calculated by the algorithm as the location of the plant to be detected by the harvesting machine. Correct flower detection of the algorithm was measured using natural images comprising saffron, green leaves, weeds and background soil. The recognition algorithm's accuracy to locate saffron flowers was 96.4% and 98.7% when HSI and YCrCb color spaces were used. Final decision making subroutines utilize artificial neural networks (ANNs) to increase the recognition accuracy. A correct detection rate of 100% was achieved when the ANN approach was employed.
    کلید واژگان
    Keywords: Artificial neural networks
    Saffron
    Machine vision
    Harvester

    شماره نشریه
    1
    تاریخ نشر
    2014-09-01
    1393-06-10
    ناشر
    Shiraz University
    دانشگاه شیراز
    سازمان پدید آورنده
    Shiraz University,
    Shiraz University
    Shiraz University

    شاپا
    1013-9885
    URI
    https://dx.doi.org/10.22099/iar.2014.2376
    http://iar.shirazu.ac.ir/article_2376.html
    https://iranjournals.nlai.ir/handle/123456789/354956

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب