• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Quarterly Journal of Iranian Chemical Communication
    • Volume 7, Issue 1, pp. 1-124, Serial No. 22
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Quarterly Journal of Iranian Chemical Communication
    • Volume 7, Issue 1, pp. 1-124, Serial No. 22
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparative QSAR study of aryl-substituted isobenzofuran-1(3H)-ones inhibitors

    (ندگان)پدیدآور
    Rostami, ZahraPourbasheer, Eslam
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    929.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    A comparative workflow, including linear and non-linear QSAR models, was carried out to evaluate the predictive accuracy of models and predict the inhibition activity of a series of aryl-substituted isobenzofuran-1(3H)-ones. The data set consisted of 34 compounds was classified into the training and test sets, randomly. Molecular descriptors were selected using the genetic algorithm (GA) as a feature selection tool. Various linear models based on multiple linear regression (MLR), principle component regression (PCR) and partial least square (PLS) and non-linear models based on artificial neural network (ANN), adaptive network-based fuzzy inference system (ANFIS) and support vector machine (SVM) methods were developed and compared. The accuracy of the models was studied by leave-one-out cross-validation (Q_LOO^2), Y-randomization test and group of compounds as external test set. Six descriptors were selected by GA to develop predictive models. With respect to the linear models, GA-PCR method was more accurate than the reset with statistical results of 〖 R〗_train^2=0.883, R_test^2=0.897,〖 R〗_(adj,train)^2=0.829,〖 R〗_(adj,test)^2=0.849,〖 F〗_train=24.07 and F_test=34.17. In case of non-linear models, GA-SVM (R_train^2=0.992 and R_test^2=0.997) showed high predictive accuracy for the inhibitory activity. It was found that the selected descriptors have the major roles in interpretation of biological activities of the compounds.
    کلید واژگان
    QSAR
    genetic algorithms
    global optimization
    SVM
    Physical chemistry

    شماره نشریه
    1112422
    تاریخ نشر
    2019-01-01
    1397-10-11
    ناشر
    Ilam, Payame Noor University
    سازمان پدید آورنده
    Department of Chemistry, Payame Noor University (PNU), P. O. Box, 19395-3697 Tehran), Iran
    Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran

    شاپا
    2423-4958
    2345-4806
    URI
    https://dx.doi.org/10.30473/icc.2019.4258
    http://icc.journals.pnu.ac.ir/article_4258.html
    https://iranjournals.nlai.ir/handle/123456789/352781

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب