• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 20, Issue 9
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 20, Issue 9
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Make Intelligent of Gastric Cancer Diagnosis Error in Qazvin’s Medical Centers: Using Data Mining Method

    (ندگان)پدیدآور
    Mortezagholi, AsgharKhosravizadeh, OmidMenhaj, Mohammad BagherShafigh, YounesKalhor, Rohollah
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    268.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Articles
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Objective: Gastric cancer is one of the most common types of cancers, which will result in irreparable harm in the case of misdiagnosis or late diagnosis. The purpose of this study is to investigate the capability of data mining techniques and disease risk factor characteristics to predict and diagnose the gastric cancer. Methods: In this retrospective descriptive-analytic study, we selected 405 samples from two groups of patient and healthy participants. A total of 11 characteristics and risk factors were examined. we used four Machine learning methods, Include support vector machine (SVM), decision tree (DT), naive Bayesian model, and k nearest neighborhood (KNN) to classify the patients with gastric cancer. The evaluation criteria to investigate the model on the database of patients with gastric cancer included Recall, Precision, F-score, and Accuracy. Data was analyzed using MATLAB® software, version 3.2 (Mathworks Inc., Natick, MA, USA). Results: Based on the results achieved from the evaluation of four methods, the accuracy rates of SVM, DT, naive Bayesian model, and KNN algorithms were 90.08, 87.89, 87.60, and 87.60 percent, respectively. The findings showed that the highest level of F-Score was related to the SVM (91.99); whereas, the lowest rate was associated with the KNN algorithm (87.17). Conclusion: According to the findings, the SVM algorithm showed the best results in classification of Test samples. So, this intelligent system can be used as a physician assistant in medical education hospitals, where the diagnosis processes are performed by medical students.
    کلید واژگان
    Gastric cancer
    risk factors
    Early Diagnosis
    Data mining
    Artificial intelligence
    Biostatistics

    شماره نشریه
    9
    تاریخ نشر
    2019-09-01
    1398-06-10
    ناشر
    West Asia Organization for Cancer Prevention (WAOCP)
    سازمان پدید آورنده
    Department of Computer Engineering, Islamic Azad University of Qazvin (QIAU), Qazvin, Iran.
    Social Determinants of Health Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
    Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran.
    General Surgeon, Assistant Professor. School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
    Social Determinants of Health Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.

    شاپا
    1513-7368
    2476-762X
    URI
    https://dx.doi.org/10.31557/APJCP.2019.20.9.2607
    http://journal.waocp.org/article_88754.html
    https://iranjournals.nlai.ir/handle/123456789/35236

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب