• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 20, Issue 6
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 20, Issue 6
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Classification of Skin Disease using Ensemble Data Mining Techniques

    (ندگان)پدیدآور
    Verma, Anurag KumarPal, SaurabhKumar, Surjeet
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    697.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Articles
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Objective: Skin diseases are a major global health problem associated with high number of people. With the rapiddevelopment of technologies and the application of various data mining techniques in recent years, the progress ofdermatological predictive classification has become more and more predictive and accurate. Therefore, development ofmachine learning techniques, which can effectively differentiate skin disease classification, is of vast importance. Themachine learning techniques applied to skin disease prediction so far, no techniques outperforms over all the others.Methods: In this research paper, we present a new method, which applies five different data mining techniques andthen developed an ensemble approach that consists all the five different data mining techniques as a single unit. Weuse informative Dermatology data to analysis different data mining techniques to classify the skin disease and then, anensemble machine learning method is applied. Results: The proposed ensemble method, which is based on machinelearning was tested on Dermatology datasets and classify the type of skin disease in six different classes like includeC1: psoriasis, C2: seborrheic dermatitis, C3: lichen planus, C4: pityriasis rosea, C5: chronic dermatitis, C6: pityriasisrubra. The results show that the dermatological prediction accuracy of the test data set is increased compared to a singleclassifier. Conclusion: The ensemble method used on Dermatology datasets give better performance as compared todifferent classifier algorithms. Ensemble method gives more accurate and effective skin disease prediction.
    کلید واژگان
    Primary Health Care
    Health Information Systems
    skin disease
    Dermatology
    Support Vector Machines
    General

    شماره نشریه
    6
    تاریخ نشر
    2019-06-01
    1398-03-11
    ناشر
    West Asia Organization for Cancer Prevention (WAOCP)
    سازمان پدید آورنده
    Research Scholor, MCA Department, VBS Purvanchal University, Jaunpur, India.
    Research Scholor, MCA Department, VBS Purvanchal University, Jaunpur, India.
    Research Scholor, MCA Department, VBS Purvanchal University, Jaunpur, India.

    شاپا
    1513-7368
    2476-762X
    URI
    https://dx.doi.org/10.31557/APJCP.2019.20.6.1887
    http://journal.waocp.org/article_88612.html
    https://iranjournals.nlai.ir/handle/123456789/33874

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب