• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 30, Issue 11
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 30, Issue 11
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)

    (ندگان)پدیدآور
    Safari, A.Mazinani, M.Hosseini, R.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.295 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Prediction of natural phenomena always suffers from uncertainty in the environment and incompleteness of data. However, various studies have been reported for prediction of the air quality index but all of them suffer from uncertainty and imprecision associated to the incompleteness of knowledge and imprecise input measures. This article takes advantages of learning of adaptive neural networks alongside in new environment. Furthermore, it presents an Adaptive Neuro-Type-2 Fuzzy Inference System (ANT2FIS) to address the uncertainty and imprecision in air quality prediction. The data set of this study was collected from Tehran municipality official website for the last five years (2012-2017). The results reveal that the ANT2FIS prediction method is more reliable and is capable of handling uncertainty compared to the other counterpart methods. The performance results on real data set show the superiority of the ANT2FIS model in the prediction process with an average accuracy of 94% (AUC 99%) compared to other related works. These results are promising for early prediction of the natural disasters and prevention of its side effects.
    کلید واژگان
    Fuzzy logic
    type
    2 Fuzzy Set
    ANFIS
    Air Pollution Disaster

    شماره نشریه
    11
    تاریخ نشر
    2017-11-01
    1396-08-10
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    Department of Computer Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
    Department of Electronic Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
    Department of Computer Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

    شاپا
    1025-2495
    1735-9244
    URI
    http://www.ije.ir/article_73061.html
    https://iranjournals.nlai.ir/handle/123456789/337779

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب