• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 31, Issue 10
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 31, Issue 10
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive Neuro-fuzzy Inference System Prediction of Zn Metal Ions Adsorption by γ-Fe2o3/Polyrhodanine Nanocomposite in a Fixed Bed Column

    (ندگان)پدیدآور
    Lashkenari, M. S.KhazaiePoul, A.Ghasemi, S.Ghorbani, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1000.کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This study investigates the potential of an intelligence model namely, Adaptive Neuro-Fuzzy Inference System (ANFIS) in prediction of the Zn metal ions adsorption in comparision with two well known empirical models included Thomas and Yoon methods. For this purpose, an organic-inorganic core/shell structure, γ-Fe2O3/polyrhodanine nanocomposite with γ-Fe2O3 nanoparticle as core with average diameter of 15 nm and polyrhodanine as shell with thickness of 3 nm, was synthesized via chemical oxidation polymerization. The properties of adsorbent were characterized with transmission electron microscope (TEM) and Fourier transform infrared (FT-IR) spectroscopy. Sixty seven experimental data sets including the treatment time (t), the initial concentration of Zn (Co), column height (h) and flow rate (Q) were used as input data to predict the ratios of effluent-to-influent concentrations of Zn (Ct/C0). The results showed that ANFIS model with the R coefficient of 0.99 can predict Ct/C0 more accurately than empirical models. Also it was found that the result of the Thomas and Yoon methods with R coefficient of 0.828 and 0.829, respectively were so close to each other. Finally, performance of our ANFIS model was compare to Thomas and Yoon methods in two different conditions, i.e. variable initial influent concentration and variable column height. High performance of ANFIS model was proved by the comparitive results.
    کلید واژگان
    adaptive neuro-fuzzy inference system
    Adsorption
    γ-Fe2O3
    Polyrhodanine
    Fixed Bed Column

    شماره نشریه
    10
    تاریخ نشر
    2018-10-01
    1397-07-09
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran
    Faculty of Water and Envirommental Engineering, Shahid Beheshti University, Tehran, Iran
    Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan, Iran
    Department of Chemical Engineering, Babol Noshirvani University of Technolgy, Babol, Iran

    شاپا
    1025-2495
    1735-9244
    URI
    https://dx.doi.org/10.5829/ije.2018.31.10a.02
    http://www.ije.ir/article_81693.html
    https://iranjournals.nlai.ir/handle/123456789/337741

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب