• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 28, Issue 8
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 28, Issue 8
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

    (ندگان)پدیدآور
    eftekhari, mahdimahdizadeh, mahboubeh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    814.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This hybrid algorithm finds difficult minority instances; then, their misclassification cost will be calculated using the proposed cost measure. Also, to improve classification performance, the lateral tuning of membership functions (in data base) is employed by means of a genetic algorithm. The performance of the proposed method is compared with some cost-sensitive classification approaches taken from the literature. Experiments are performed over 22 highly imbalanced datasets from KEEL dataset repository; the classification results are evaluated using the Area Under the Curve (AUC) as a performance measure. Some statistical non-parametric tests are used to compare the classification performance of different methods in different datasets. Results reveal that our hybrid cost-sensitive fuzzy rule-based classifier outperforms other methods in terms of classification accuracy.
    کلید واژگان
    cost sensitive learning
    Fuzzy Clustering
    fuzzy rule
    based classification systems
    evolutionary algorithms
    lateral tuning

    شماره نشریه
    8
    تاریخ نشر
    2015-08-01
    1394-05-10
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    Department of Computer Engineering, Department of Computer Engineering
    Department of Computer Engineering, Shahid Bahonar University

    شاپا
    1025-2495
    1735-9244
    URI
    http://www.ije.ir/article_72562.html
    https://iranjournals.nlai.ir/handle/123456789/337309

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب