• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 29, Issue 6
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 29, Issue 6
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging

    (ندگان)پدیدآور
    Yaghmaee, Farzin
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    937.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a new robust fuzzy super resolution approach. Our approach, firstly registers two input image using SIFT-BP-RANSAC registration. Secondly, due to the importance of information gain ratio in the SR outcomes, the fuzzy regularization scheme uses the prior knowledge about the low-resolution image to add the amount of lost details of the input images to the registered one using the common linear observation model. Due to this fact, our approach iteratively tries to make a prediction of the high-resolution image based on the predefined regularization rules. Afterwards the low-resolution image have made out of the new high-resolution image. Minimizing the difference between the resulted low-resolution image and the input low-resolution image will justify our regularization rules. Flexible characteristics of fuzzy regularization behave adaptively on edges, detailed segments, and flat regions of local segments within the image. General information gain ratio also should grow during the regularization. Our fuzzy regularization indicates independence from the acquisition model. Consequently, robustness of our method on different ill-posed capturing conditions and against registration error noise compensates the shortcomings of same regularization approaches in the literature. Our final results indicate reduced aliasing achievements in comparison with similar recent state of the art works.
    کلید واژگان
    Image Super Resolution
    Fuzzy Regularization
    SIFT
    RANSAC Registration

    شماره نشریه
    6
    تاریخ نشر
    2016-06-01
    1395-03-12
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    Electrical and Computer Engineering Department, Semnan University

    شاپا
    1025-2495
    1735-9244
    URI
    http://www.ije.ir/article_72734.html
    https://iranjournals.nlai.ir/handle/123456789/337001

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب