• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 33, Issue 5
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 33, Issue 5
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Sample Dependent Decision Fusion Algorithm for Graph-based Semi-supervised Learning

    (ندگان)پدیدآور
    Namjoy, A.Bosaghzadeh, A.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    911.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    On many occasions, the evaluation of a phenomenon based on a single feature could not solely be resulted in comprehensive and accurate results. Moreover, even if we have several features, we don't know in advance, which feature offers a better description of the phenomenon. Thus, selecting the best features and especially their combination could lead to better results. An affinity graph is a tool that can describe the relationship between the samples. In this paper, we proposed a graph-based sample-based ranking method that sorts the graphs based on six proposed parameters. The sorting is performed such that the graphs at the top of the list have better performance compared to the graphs at the bottom. Furthermore, we propose a fusion method to merge the information of various features and improve the accuracy of label propagation. Moreover, a method is proposed for parameter optimizations and the ultimate decision fusion. The experimental results indicate that the proposed scheme, apart from correctly ranking the graphs according to their accuracy, in the fusion step, increases the accuracy compared to the use of a single feature.
    کلید واژگان
    Affinity Graph
    Decision Fusion
    Label Propagation
    Multiple Features

    شماره نشریه
    5
    تاریخ نشر
    2020-05-01
    1399-02-12
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
    Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

    شاپا
    1025-2495
    1735-9244
    URI
    https://dx.doi.org/10.5829/ije.2020.33.05b.35
    http://www.ije.ir/article_107348.html
    https://iranjournals.nlai.ir/handle/123456789/336992

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب