• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 33, Issue 5
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Engineering
    • Volume 33, Issue 5
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting the Empirical Distribution of Video Quality Scores Using Recurrent Neural Networks

    (ندگان)پدیدآور
    Otroshi Shahreza, H.Amini, A.Behroozi, H.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.124 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Video quality assessment is a crucial routine in the broadcasting industry. Due to the duration and the excessive number of video files, a computer-based video quality assessment mechanism is the only solution. While it is common to measure the quality of a video file at the compression stage by comparing it against the raw data, at later stages, no reference video is available for comparison. Therefore, a no-reference (Blind) video quality assessment (NR-VQA) technique is essential. The current NR-VQA methods predict only the mean opinion score (MOS) and do not provide further information about the distribution of people score. However, this distribution is informative for the evaluation of QoE. In this paper, we propose a method for predicting the empirical distribution of human opinion scores in the assessment of video quality. To this end, we extract some frame-level features, and next, we feed these features to a recurrent neural network. Finally, the distribution of opinion score is predicted in the last layer of the RNN. The experiments show that averages of predicted distributions have comparable or better results with previous methods on the KonVid-1k dataset.
    کلید واژگان
    Distribution
    No-Reference
    opinion score
    Recurrent Neural Network (RNN)
    Video Quality Assessment (VQA)

    شماره نشریه
    5
    تاریخ نشر
    2020-05-01
    1399-02-12
    ناشر
    Materials and Energy Research Center
    سازمان پدید آورنده
    Electrical Engineering Department, Sharif University of Technology, Tehran, Iran
    Electrical Engineering Department, Sharif University of Technology, Tehran, Iran
    Electrical Engineering Department, Sharif University of Technology, Tehran, Iran

    شاپا
    1025-2495
    1735-9244
    URI
    https://dx.doi.org/10.5829/ije.2020.33.05b.32
    http://www.ije.ir/article_107338.html
    https://iranjournals.nlai.ir/handle/123456789/336989

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب