• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 18, Issue 5
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 18, Issue 5
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modified Bat Algorithm for Feature Selection with the Wisconsin Diagnosis Breast Cancer (WDBC) Dataset

    (ندگان)پدیدآور
    Jeyasingh, SuganthiVeluchamy, Malathy
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    615.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Methodological papers
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and repeated data from the dataset before final diagnosis. This can be done using any of the feature selection algorithms available in data mining. Feature selection is considered as a vital step to increase the classification accuracy. This paper proposes a Modified Bat Algorithm (MBA) for feature selection to eliminate irrelevant features from an original dataset. The Bat algorithm was modified using simple random sampling to select the random instances from the dataset. Ranking was with the global best features to recognize the predominant features available in the dataset. The selected features are used to train a Random Forest (RF) classification algorithm. The MBA feature selection algorithm enhanced the classification accuracy of RF in identifying the occurrence of breast cancer. The Wisconsin Diagnosis Breast Cancer Dataset (WDBC) was used for estimating the performance analysis of the proposed MBA feature selection algorithm. The proposed algorithm achieved better performance in terms of Kappa statistic, Mathew's Correlation Coefficient, Precision, F-measure, Recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE).
    کلید واژگان
    breast cancer
    Wisconsin Diagnosis Breast Cancer (WDBC) dataset
    Modified Bat algorithm
    Cancer biology

    شماره نشریه
    5
    تاریخ نشر
    2017-05-01
    1396-02-11
    ناشر
    West Asia Organization for Cancer Prevention (WAOCP)
    سازمان پدید آورنده
    Department of Computer Science and Engineering, Raja College of Engineering and Technology, Madurai, Tamilnadu, India .
    Department of Electrical and Electronics Engineering, Anna University Regional Centre, Madurai, Tamilnadu, India.

    شاپا
    1513-7368
    2476-762X
    URI
    https://dx.doi.org/10.22034/APJCP.2017.18.5.1257
    http://journal.waocp.org/article_46478.html
    https://iranjournals.nlai.ir/handle/123456789/33216

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب