• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Fuzzy Systems
    • Volume 16, Issue 5
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Fuzzy Systems
    • Volume 16, Issue 5
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A research on classification performance of fuzzy classifiers based on fuzzy set theory

    (ندگان)پدیدآور
    Yang, Y. L.Bai, X. Y.
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Due to the complexities of objects and the vagueness of the human mind, it has attracted considerable attention from researchers studying fuzzy classification algorithms. In this paper, we propose a concept of fuzzy relative entropy to measure the divergence between two fuzzy sets. Applying fuzzy relative entropy, we prove the conclusion that patterns with high fuzziness are close to the classification boundary. Thus, it plays a great role in classification problems that patterns  with high fuzziness are classified correctly. Meanwhile, we draw a conclusion that the fuzziness of a pattern and the uncertainty of its class label are equivalent. As is well known, entropy not only measures the uncertainty of random variable, but also represents the amount of information carried by the variable. Hence, a fuzzy classifier with high fuzziness would  carry much information about training set. Therefore, in addition to some assessment criteria such as classification accuracy, we could study the classification performance from the perspective of the fuzziness of classifier. In order to try to ensure the objectivity in dealing with unseen patterns, we should make full use of information of the known pattern set and do not make too much subjective assumptions in the process of learning. Consequently,  for problems with rather complex decision boundaries especially, under the condition that a certain training accuracy threshold is maintained, we demonstrate that a fuzzy classifier with high fuzziness would have a well generalization performance.
    کلید واژگان
    Fuzziness
    Fuzzy classifier
    Fuzzy relative entropy
    Flassification boundary
    generalization

    شماره نشریه
    5
    تاریخ نشر
    2019-10-01
    1398-07-09
    ناشر
    University of Sistan and Baluchestan
    سازمان پدید آورنده
    School of Mathematics and Statistics, Xidian University, Xi'an 710126, PR China.
    School of Mathematics and Statistics, Xidian University, Xi'an 710126, PR China,, and School of Sciences, Northwest A&F University, Yangling 712100, PR China.

    شاپا
    1735-0654
    2676-4334
    URI
    https://dx.doi.org/10.22111/ijfs.2019.4902
    https://ijfs.usb.ac.ir/article_4902.html
    https://iranjournals.nlai.ir/handle/123456789/331080

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب