Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
(ندگان)پدیدآور
ABBASZADE, M.Mohebbi, M.
نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Riemann-Liouville derivative to obtain a fully discrete implicit scheme and analyze the solvability, stability and convergence of proposed scheme using the Fourier method. The convergence order of method is O(t + n4). Numerical examples demonstrate the theoretical results and high accuracy of proposed scheme.
کلید واژگان
Electroanalytical chemistryReaction-sub-diffusion
Compact finite difference
Fourier analysis
solvability
unconditional stability
Convergence
شماره نشریه
2تاریخ نشر
2012-09-011391-06-11
ناشر
University of Kashanسازمان پدید آورنده
University of Kashan, Kashan, I. R. IranUniversity of Kashan, Kashan, I. R. Iran
شاپا
2228-64892008-9015



