• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 12, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 12, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

    (ندگان)پدیدآور
    Kalani, HadiAkbarzadeh, AlirezaMoghimi, Sahar
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    821.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required iterations in order to reach the desired accuracy level. Materials and Methods To overcome the direct kinematic problem, an artificial neural network and third-order Newton-Raphson algorithm were combined to provide an improved hybrid method. In this method, approximate solution was presented for the direct kinematic problem by the neural network. This solution could be considered as the initial guess for the third-order Newton-Raphson algorithm to provide an answer with the desired level of accuracy. Results The results showed that the proposed combination could help find a approximate solution and reduce the execution time for the direct kinematic problem, The results showed that muscular actuations showed periodic behaviors, and the maximum length variation of temporalis muscle was larger than that of masseter and pterygoid muscles. By reducing the processing time for solving the direct kinematic problem, more time could be devoted to control calculations.. In this method, for relatively high levels of accuracy, the number of iterations and computational time decreased by 90% and 34%, respectively, compared to the conventional Newton method. Conclusion The present analysis could allow researchers to characterize and study the mastication process by specifying different chewing patterns (e.g., muscle displacements).
    کلید واژگان
    Kinematic Problem
    Mastication Robot
    Neural Networks
    Newton-Raphson Method
    Medical Application of Artificial Intelligence
    Medical Application of Computer Simulation
    Medical Physics

    شماره نشریه
    4
    تاریخ نشر
    2015-12-01
    1394-09-10
    ناشر
    Mashhad University of Medical Sciences
    سازمان پدید آورنده
    Center of Excellence on Soft Computing and Intelligent Information Processing (SCIIP) Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
    Center of Excellence on Soft Computing and Intelligent Information Processing (SCIIP) Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
    Center of Excellence on Soft Computing and Intelligent Information Processing (SCIIP) Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

    شاپا
    2345-3672
    URI
    https://dx.doi.org/10.22038/ijmp.2016.6838
    http://ijmp.mums.ac.ir/article_6838.html
    https://iranjournals.nlai.ir/handle/123456789/324959

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب