• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 15, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 15, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition

    (ندگان)پدیدآور
    Almurshedi, AhmedIsmail, Abd KhamimSulaiman, Najwa
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.138 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data of visual evoked potentials and extract time-locked signals with external visual stimulation. A bio-amplifier (iERG 100P) and data acquisition system (OMB-DAQ-3000) were utilized to record EEG raw data from the human scalp. MATLAB Data Acquisition Toolbox, Wavelet Toolbox, and Simulink model were employed to analyze EEG signals and extract VEP responses. Results: Results were verified in Simulink environment for the real recorded EEG data. The proposed model allowed precise decomposition and classification of VEP signals through the combined operation of DWT and SVD. DWT was successfully used for the decomposition of VEP signals to different frequencies followed by SVD for feature extraction and classification. Conclusion: The visual and quantitative results indicated that the impact of the proposed technique of combining DWT and SVD was promising. Combining the two techniques led to a two-fold increase in the impact of peak signal to noise ratio of all the tested signals compared to using each technique individually.
    کلید واژگان
    classification
    Feature Extraction
    Singular Value Decomposition (SVD)
    Visual Evoked Potentials Wavelet Transform
    Biological Signal Processing
    Laser and Optics
    Medical Physics

    شماره نشریه
    4
    تاریخ نشر
    2018-10-01
    1397-07-09
    ناشر
    Mashhad University of Medical Sciences
    سازمان پدید آورنده
    Department of Medical Physics, College of Science, Al-Karkh University of Science
    Department of Physics, Faculty of Science, Universiti Teknologi Malaysia
    Department of Medical Physics, College of Science, Al-Karkh University of Science

    شاپا
    2345-3672
    URI
    https://dx.doi.org/10.22038/ijmp.2018.28583.1311
    http://ijmp.mums.ac.ir/article_10620.html
    https://iranjournals.nlai.ir/handle/123456789/324908

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب