• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 16, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 16, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Breast Cancer Diagnosis from Perspective of Class Imbalance

    (ندگان)پدیدآور
    Zhang, JueChen, Li
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.142 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Introduction: Breast cancer is the second cause of mortality among women. Early detection is the only rescue to reduce the risk of breast cancer mortality. Traditional methods cannot effectively diagnose tumor since they are based on the assumption of well-balanced dataset.. However, a hybrid method can help to alleviate the two-class imbalance problem existing in the diagnosis of breast cancer and establish a more accurate diagnosis. Material and Methods: The proposed hybrid approach was based on improved Laplacian score (LS) andK-nearest neighbor (KNN) algorithms called LS-KNN. An improved LS algorithm was used for obtaining the optimal feature subset. The KNN with automatic K was utilized for classifying the data which guaranteed the effectiveness of the proposed method by reducing the computational effort and making the classification more faster. The effectiveness of LS-KNN was also examined on two biased-representative breast cancer datasets using classification accuracy, sensitivity, specificity, G-mean, and Matthews correlation coefficient. Results: Applying the proposed algorithm on two breast cancer datasets indicated that the efficiency of the new method was higher than the previously introduced methods. The obtained values of accuracy, sensitivity, specificity, G-mean, and Matthews correlation coefficient were 99.27%, 99.12%, 99.51%, 99.42%, respectively. Conclusion: Experimental results showed that the proposed approach worked well with breast cancer datasets and could be a good alternative to the well-known machine learning methods
    کلید واژگان
    Breast Cancer
    classification
    imbalance
    Computer aided diagnosis
    Medical Application of Computer Simulation
    Medical Physics

    شماره نشریه
    3
    تاریخ نشر
    2019-05-01
    1398-02-11
    ناشر
    Mashhad University of Medical Sciences
    سازمان پدید آورنده
    Scholl of Information and Technology, Northwest University, Xi'an,China
    shool of Information and Technology, Northwest Nniversity, Xi'an, Chian

    شاپا
    2345-3672
    URI
    https://dx.doi.org/10.22038/ijmp.2018.31600.1373
    http://ijmp.mums.ac.ir/article_11544.html
    https://iranjournals.nlai.ir/handle/123456789/324906

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب