• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 12, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Medical Physics
    • Volume 12, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Fuzzy Expert System for Distinguishing between Bacterial and Aseptic Meningitis

    (ندگان)پدیدآور
    Langarizadeh, MostafaKhajehpour, EsmatKhajehpour, HassanFarokhnia, MehrdadEftekhari, Mahdi
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    547.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Introduction Bacterial meningitis is a known infectious disease which occurs at early ages and should be promptly diagnosed and treated. Bacterial and aseptic meningitis are hard to be distinguished. Therefore, physicians should be highly informed and experienced in this area. The main aim of this study was to suggest a system for distinguishing between bacterial and aseptic meningitis, using fuzzy logic.    Materials and Methods In the first step, proper attributes were selected using Weka 3.6.7 software. Six attributes were selected using Attribute Evaluator, InfoGainAttributeEval, and Ranker search method items. Then, a fuzzy inference engine was designed using MATLAB software, based on Mamdani's fuzzy logic method with max-min composition, prod-probor, and centroid defuzzification. The rule base consisted of eight rules, based on the experience of three specialists and information extracted from textbooks. Results Data were extracted from 106 records of patients with meningitis (42 cases with bacterial meningitis) in order to evaluate the proposed system. The system accuracy, specificity, and sensitivity were 89%, 92 %, and 97%, respectively. The area under the ROC curve was 0.93, and Kappa test revealed a good level of agreement (k=0.84, PConclusion According to the results, the suggested fuzzy system showed a good agreement and high efficiency in terms of distinguishing between bacterial and aseptic meningitis. To avoid unnecessary antibiotic treatments, patient hospitalization, and misdiagnosis of bacterial meningitis, such systems are useful and highly recommended. However, no system has been yet introduced with 100% correct output and further research is required to improve the results.
    کلید واژگان
    Aseptic meningitis
    Bacterial meningitis
    Expert system
    Fuzzy Logic
    Meningitis
    Medical Application of Computer Simulation
    Medical Physics

    شماره نشریه
    1
    تاریخ نشر
    2015-03-01
    1393-12-10
    ناشر
    Mashhad University of Medical Sciences
    سازمان پدید آورنده
    Medical Informatics Dept., Faculty of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
    Medical Informatics Dept., Tehran University of Medical Sciences, Tehran, Iran
    Biomedical Engineering Dept., Tehran University of Medical Sciences, Tehran, Iran
    Infectious Diseases Specialist, Kerman University of Medical Sciences, Kerman, Iran
    Artificial Intelligence, Department of Computer Engineering, Shahid Bahonar University, Kerman, Iran

    شاپا
    2345-3672
    URI
    https://dx.doi.org/10.22038/ijmp.2015.4322
    http://ijmp.mums.ac.ir/article_4322.html
    https://iranjournals.nlai.ir/handle/123456789/324124

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب