• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Nonlinear Analysis and Applications
    • Volume 11, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Nonlinear Analysis and Applications
    • Volume 11, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

    (ندگان)پدیدآور
    Langari, ShadiMarvi, HosseinZahedi, Morteza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    476.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorithm is proposed which uses support vector machine classifier and cuckoo search algorithm in combination with the genetic algorithm in order to select the optimal features. In the proposed method, at first, a set of characteristics based on the Cepstral, Spectral and Fourier coefficients of the speech signal is extracted and then with the proposed hybrid algorithm, the operation of selecting the optimal feature set is performed. The results of the experiments on the famous Berlin's emotional speech database showed that using this proposed method for selecting the features, increases the classification accuracy to about 93%.
    کلید واژگان
    Speech Emotion recognition
    Feature selection
    Evolutionary Algorithm

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Semnan University
    سازمان پدید آورنده
    Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
    Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
    Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran

    شاپا
    2008-6822
    URI
    https://dx.doi.org/10.22075/ijnaa.2020.4227
    https://ijnaa.semnan.ac.ir/article_4227.html
    https://iranjournals.nlai.ir/handle/123456789/322872

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب