• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 19, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 19, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparison of Survival Models for Analyzing Prognostic Factors in Gastric Cancer Patients

    (ندگان)پدیدآور
    Habibi, DanialRafiei, MohammadChehrei, AliShayan, ZahraTafagodi, Soheil
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    320.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Articles
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Objective: There are a number of models for determining risk factors for survival of patients with gastric cancer.This study was conducted to select the model showing the best fit with available data. Methods: Cox regression andparametric models (Exponential, Weibull, Gompertz, Log normal, Log logistic and Generalized Gamma) were utilized inunadjusted and adjusted forms to detect factors influencing mortality of patients. Comparisons were made with AkaikeInformation Criterion (AIC) by using STATA 13 and R 3.1.3 softwares. Results: The results of this study indicated thatall parametric models outperform the Cox regression model. The Log normal, Log logistic and Generalized Gammaprovided the best performance in terms of AIC values (179.2, 179.4 and 181.1, respectively). On unadjusted analysis,the results of the Cox regression and parametric models indicated stage, grade, largest diameter of metastatic nest,largest diameter of LM, number of involved lymph nodes and the largest ratio of metastatic nests to lymph nodes,to be variables influencing the survival of patients with gastric cancer. On adjusted analysis, according to the best model(log normal), grade was found as the significant variable. Conclusion: The results suggested that all parametric modelsoutperform the Cox model. The log normal model provides the best fit and is a good substitute for Cox regression.
    کلید واژگان
    Cox regression
    Parametric models
    AIC
    Gastric cancer
    Modeling biostatistic

    شماره نشریه
    3
    تاریخ نشر
    2018-03-01
    1396-12-10
    ناشر
    West Asia Organization for Cancer Prevention (WAOCP)
    سازمان پدید آورنده
    Department of Biostatistics, Faculty of Medicine, Arak University of Medical Sciences, Arak,Iran.
    Department of Biostatistics, Faculty of Medicine, Arak University of Medical Sciences, Arak,Iran.
    Pars Clinicopathology Clinicopathology Laboratory, Arak, Iran.
    Trauma Research Center, Department of Community Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
    Department of Biostatistics, Faculty of Medicine, Arak University of Medical Sciences, Arak,Iran.

    شاپا
    1513-7368
    2476-762X
    URI
    https://dx.doi.org/10.22034/APJCP.2018.19.3.749
    http://journal.waocp.org/article_57627.html
    https://iranjournals.nlai.ir/handle/123456789/32064

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب