• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Oil and Gas Science and Technology
    • Volume 4, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Oil and Gas Science and Technology
    • Volume 4, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir

    (ندگان)پدیدآور
    Sebtosheikh, Mohammad AliMotafakkerfard, RezaRiahi, Mohammad AliMoradi, Siyamak
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    111.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM's) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this research, SVM classification method is used for lithology prediction from petrophysical well logs based on petrographic studies of core lithology in a heterogeneous carbonate reservoir in southwestern Iran. Data preparation including normalization and attribute selection was performed on the data. Well by well data separation technique was used for data partitioning so that the instances of each well were predicted against training the SVM with the other wells. The effect of different kernel functions on the SVM performance was deliberated. The results showed that the SVM performance in the lithology prediction of wells by applying well by well data partitioning technique is good, and that in two data separation cases, radial basis function (RBF) kernel gives a higher lithology misclassification rate compared with polynomial and normalized polynomial kernels. Moreover, the lithology misclassification rate associated with RBF kernel increases with an increasing training set size.
    کلید واژگان
    Lithology Prediction
    Support Vector Machines
    Kernel Functions
    Heterogeneous Carbonate Reservoirs
    Petrophysical Well Logs

    شماره نشریه
    2
    تاریخ نشر
    2015-05-01
    1394-02-11
    ناشر
    Petroleum University of Technology
    سازمان پدید آورنده
    Department of Petroleum Exploration, Petroleum University of Technology, Abadan, Iran
    Department of Petroleum Exploration, Petroleum University of Technology, Abadan, Iran
    University of Tehran, Geophysics Institute, Tehran, Iran
    Department of Petroleum Exploration, Petroleum University of Technology, Abadan, Iran

    شاپا
    2345-2412
    2345-2420
    URI
    https://dx.doi.org/10.22050/ijogst.2015.9588
    http://ijogst.put.ac.ir/article_9588.html
    https://iranjournals.nlai.ir/handle/123456789/320232

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب