• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Pharmaceutical Research
    • Volume 15, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Pharmaceutical Research
    • Volume 15, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

    (ندگان)پدیدآور
    mohammadzadeh, mahdiZarehoseini, Zeinab
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.078 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers.
    کلید واژگان
    Hospital
    Knowledge discovery
    CRM
    Data mining
    RFM

    شماره نشریه
    1
    تاریخ نشر
    2016-02-01
    1394-11-12
    ناشر
    School of Pharmacy, Shahid Beheshti University of Medical Sciences
    سازمان پدید آورنده
    affiliation
    Department of Engineering & Technology, Payame Noor University, PO BOX 19395-3697 Tehran, I.R of IRAN

    شاپا
    1735-0328
    1726-6890
    URI
    https://dx.doi.org/10.22037/ijpr.2016.1827
    http://ijpr.sbmu.ac.ir/article_1827.html
    https://iranjournals.nlai.ir/handle/123456789/312034

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب