• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Smart Electrical Engineering
    • Volume 08, Issue 03
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Smart Electrical Engineering
    • Volume 08, Issue 03
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fault diagnosis in a distillation column using a support vector machine based classifier

    (ندگان)پدیدآور
    mirakhorli, ebrahim
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.170 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in various fields of machine learning has been successful and appears to be effective for fault diagnosis in industrial systems. This project is to design a support vector machine fault diagnosis system for a distillation tower as a key component of the process. The study included 41 stage distillation condenser and boiler theory is that a combination of two partial products of 99% purity breaks Based on the calculations, modeling and simulation is a tray to tray. Considering the variety of different origins faults in the system under study, a multi-class classification problem can be achieved two techniques commonly used to solve multi-class classification for support vector machine as "one to one" and "one against all" is used. The classifier models designed to detect faults in the systems studied were evaluated as successful results were obtained for all types of faults. The model was designed based on the speed in detecting various faults were compared on the basis of support vector machine model based on a technique called "One on One" have delivered a better performance.
    کلید واژگان
    Fault diagnosis
    distillation
    Support Vector Machines
    a multi-class classification

    شماره نشریه
    03
    تاریخ نشر
    2019-09-01
    1398-06-10
    ناشر
    Islamic Azad University,Central Tehran Branch
    سازمان پدید آورنده
    islamic azad university tehran markazi

    شاپا
    2251-9246
    2345-6221
    URI
    http://ijsee.iauctb.ac.ir/article_673807.html
    https://iranjournals.nlai.ir/handle/123456789/308574

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب