• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • تحقیقات آب و خاک ایران
    • دوره 51, شماره 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • تحقیقات آب و خاک ایران
    • دوره 51, شماره 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ارزیابی عملکرد روش‌های ماشین‌بردار پشتیبان و سیستم استنتاج عصبی فازی تطبیقی در پیش‌بینی جریان ماهانه رودخانه‌ها (مطالعه موردی رودخانه‌های نازلو و سزار)

    (ندگان)پدیدآور
    احمدی, فرشاد
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.600 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    مقاله پژوهشی
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    در سال­های اخیر با رشد فناوری، روش­های نوین برای حل مسائل غیرخطی نظیر پیش­بینی جریان رودخانه­ها به صورت قابل ملاحظه­ای توسعه یافته است. از جمله روش­هایی که اخیراً توسط محققان مختلف در این زمینه مورد استفاده قرار گرفته است مدل­های ماشین بردار پشتیبان (SVM) و سیستم استنتاج عصبی فازی تطبیقی (ANFIS) می­باشد. در این مطالعه از روش­های مذکور برای پیش­بینی جریان ماهانه رودخانه­های نازلوچای و سزار در دوره آماری 1395-1335 استفاده شد. در ابتدا الگوهای ورودی در دو حالت الف) استفاده از داده­های جریان و در نظر گرفتن نقش حافظه و ب) تاثیر دادن ترم پریودیک آماده و به مدل­ها معرفی گردید. مدل‌سازی براساس 80 درصد داده‌های تاریخی ثبت شده صورت ‌گرفت (576 ماه) و با 20 (144 ماه) درصد بقیه ارزیابی گردید. عملکرد مدل­های به کار رفته با شاخص­های آماری مجذور میانگین مربعات خطا (RMSE)، نش- ساتکلیف (NS) و میانگین قدر مطلق خطای نسبی (MARE)، مورد بررسی قرار گرفت. نتایج حاصل نشان داد که روش SVM با تابع کرنل RBF بیش­ترین دقت را در پیش­بینی جریان ماهانه هر دو رودخانه داشته و استفاده از ترم پریودیک توانسته است عملکرد آن را به طور قابل ملاحظه­ای افزایش دهد. همچنین کارایی مدل ANFIS نیز با استفاده از ترم پریودیک بهبود یافته و در محل ایستگاه تپیک در الگوی M7 و برای جریان رودخانه سزار با الگوی M6 کمترین خطا را در پیش­بینی جریان داشته است. به طور کلی نتایج این مطالعه نشان داد که روش SVM از عملکرد بهتری نسبت به مدل ANFIS در پیش­بینی جریان برخوردار بوده و انتخاب تابع کرنل مناسب تاثیر مستقیمی بر کارایی آن دارد.
    کلید واژگان
    اثر پریودیک
    تابع خود همبستگی جزئی
    تابع عضویت
    تابع کرنل
    منابع آب

    شماره نشریه
    3
    تاریخ نشر
    2020-05-21
    1399-03-01
    ناشر
    دانشگاه تهران
    University of Tehran
    سازمان پدید آورنده
    استادیار گروه هیدرولوژی و مهندسی منابع آب، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز، اهواز، ایران

    شاپا
    2008-479X
    2423-7833
    URI
    https://dx.doi.org/10.22059/ijswr.2019.290994.668356
    https://ijswr.ut.ac.ir/article_73974.html
    https://iranjournals.nlai.ir/handle/123456789/307516

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب