• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 20, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 20, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Breast Cancer Detection using Crow Search Optimization based Intuitionistic Fuzzy Clustering with Neighborhood Attraction

    (ندگان)پدیدآور
    S, ParvathavarthiniN, Karthikeyani VisalakshiS, Shanthi
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    647.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Articles
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Objective: Generally, medical images contain lots of noise that may lead to uncertainty in diagnosing theabnormalities. Computer aided diagnosis systems offer a support to the radiologists in identifying the disease affectedarea. In mammographic images, some normal tissues may appear to be similar to masses and it is tedious to differentiatethem. Therefore, this paper presents a novel framework for the detection of mammographic masses that leads toearly diagnosis of breast cancer. Methods: This work proposes a Crow search optimization based Intuitionistic fuzzyclustering approach with neighborhood attraction (CrSA-IFCM-NA) for identifying the region of interest. First ordermoments were extracted from preprocessed images. These features were given as input to the Intuitionistic fuzzyclustering algorithm. Instead of randomly selecting the initial centroids, crow search optimization technique is appliedto choose the best initial centroid and the masses are separated. Experiments are conducted over the images taken fromthe Mammographic Image Analysis Society (mini-MIAS) database. Results: CrSA-IFCM-NA effectively separatedthe masses from mammogram images and proved to have good results in terms of cluster validity indices indicatingthe clear segmentation of the regions. Conclusion: The experimental results show that the accuracy of the proposedmethod proves to be encouraging for detection of masses. Thus, it provides a better assistance to the radiologists indiagnosing breast cancer at an early stage.
    کلید واژگان
    Image Segmentation
    Neighborhood attraction
    Intuitionistic Fuzzy C-Means clustering
    Mammogram images
    Crow search Optimization
    Cancer biology

    شماره نشریه
    1
    تاریخ نشر
    2019-01-01
    1397-10-11
    ناشر
    West Asia Organization for Cancer Prevention (WAOCP)
    سازمان پدید آورنده
    Department of Computer Technology, Kongu Engineering College, Perundurai, Tamilnadu, India.
    Department of Computer Science, Government Arts and Science College, Kangeyam, Tamilnadu, India.
    Department of Computer Applications, Kongu Engineering College, Perundurai, Tamilnadu, India.

    شاپا
    1513-7368
    2476-762X
    URI
    https://dx.doi.org/10.31557/APJCP.2019.20.1.157
    http://journal.waocp.org/article_81697.html
    https://iranjournals.nlai.ir/handle/123456789/30463

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب