• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Algorithms and Computation
    • Volume 52, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Algorithms and Computation
    • Volume 52, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Note on Early Warning Systems for Monitoring the Inflation of Iran

    (ندگان)پدیدآور
    Daadmehr, ElhamHabibi, Reza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    349.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    To check the financial stability, it is important to alarm the possibility of future potential financial crisis. In the literature, the early warning system (EWS) is designed to warn the occurrence of a financial crisis before it happens. This tool gives strengthens to managers to make efficient policy in real economic activities. Hyperinflation, as a financial crisis, is an uncommon bad phenomenon in every economy.  It quickly erodes the real value of the local currency, as the prices of all goods increase. This causes people to minimize their holdings in that currency as they usually switch to more stable foreign currencies, often the US Dollar. Hence, designing a EWS for detecting hyperinflation is valuable task. In the current paper, Iran monthly inflation is modeled by a first  orders autoregressive and moving average model (ARMA) with two-state Markov switching (MS) states, i.e., ( MS left( 2 right) -ARMA left( 1,1 right) ) . Based on this model, a logistic-EWS is proposed. From the empirical results, it is seen that, in Iran, the low inflation state is more probable than state of high inflation. Beside this, the time of remaining in the low inflation position is almost 9 times more than of high inflation position. To check validity of the results and control prediction errors,it is seen that at least 89 percentages of future states of inflation are correctly predicted with a low noise-to-signal ratio discrepancy measure.
    کلید واژگان
    economic crisis
    EWS
    MS model
    Logistic regression

    شماره نشریه
    1
    تاریخ نشر
    2020-06-01
    1399-03-12
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Statistics, Central Bank of Iran
    Iran Banking Institute, Central Bank of Iran

    شاپا
    2476-2776
    2476-2784
    URI
    https://jac.ut.ac.ir/article_77109.html
    https://iranjournals.nlai.ir/handle/123456789/296048

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب