نمایش مختصر رکورد

dc.contributor.authorMoradi, M.en_US
dc.contributor.authorHamidzadeh, J.en_US
dc.date.accessioned1399-07-09T06:04:23Zfa_IR
dc.date.accessioned2020-09-30T06:04:23Z
dc.date.available1399-07-09T06:04:23Zfa_IR
dc.date.available2020-09-30T06:04:23Z
dc.date.issued2019-07-01en_US
dc.date.issued1398-04-10fa_IR
dc.date.submitted2018-04-29en_US
dc.date.submitted1397-02-09fa_IR
dc.identifier.citationMoradi, M., Hamidzadeh, J.. (2019). Ensemble-based Top-k Recommender System Considering Incomplete Data. Journal of AI and Data Mining, 7(3), 393-402. doi: 10.22044/jadm.2019.7026.1830en_US
dc.identifier.issn2322-5211
dc.identifier.issn2322-4444
dc.identifier.urihttps://dx.doi.org/10.22044/jadm.2019.7026.1830
dc.identifier.urihttp://jad.shahroodut.ac.ir/article_1452.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/294918
dc.description.abstractRecommender systems have been widely used in e-commerce applications. They are a subclass of information filtering system, used to either predict whether a user will prefer an item (prediction problem) or identify a set of k items that will be user-interest (Top-k recommendation problem). Demanding sufficient ratings to make robust predictions and suggesting qualified recommendations are two significant challenges in recommender systems. However, the latter is far from satisfactory because human decisions affected by environmental conditions and they might change over time. In this paper, we introduce an innovative method to impute ratings to missed components of the rating matrix. We also design an ensemble-based method to obtain Top-k recommendations. To evaluate the performance of the proposed method, several experiments have been conducted based on 10-fold cross validation over real-world data sets. Experimental results show that the proposed method is superior to the state-of-the-art competing methods regarding applied evaluation metrics.en_US
dc.format.extent1338
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of AI and Data Miningen_US
dc.relation.isversionofhttps://dx.doi.org/10.22044/jadm.2019.7026.1830
dc.subjectTop-k recommender systemsen_US
dc.subjectIncomplete dataen_US
dc.subjectEnsemble learningen_US
dc.subjectH.6.3.1. Classifier design and evaluationen_US
dc.titleEnsemble-based Top-k Recommender System Considering Incomplete Dataen_US
dc.typeTexten_US
dc.typeResearch/Original/Regular Articleen_US
dc.contributor.departmentFaculty of computer engineering and information technology, Sadjad University of Technology, Mashhad, Iran.en_US
dc.contributor.departmentFaculty of computer engineering and information technology, Sadjad University of Technology, Mashhad, Iran.en_US
dc.citation.volume7
dc.citation.issue3
dc.citation.spage393
dc.citation.epage402


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد