• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ensemble-based Top-k Recommender System Considering Incomplete Data

    (ندگان)پدیدآور
    Moradi, M.Hamidzadeh, J.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.307 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Recommender systems have been widely used in e-commerce applications. They are a subclass of information filtering system, used to either predict whether a user will prefer an item (prediction problem) or identify a set of k items that will be user-interest (Top-k recommendation problem). Demanding sufficient ratings to make robust predictions and suggesting qualified recommendations are two significant challenges in recommender systems. However, the latter is far from satisfactory because human decisions affected by environmental conditions and they might change over time. In this paper, we introduce an innovative method to impute ratings to missed components of the rating matrix. We also design an ensemble-based method to obtain Top-k recommendations. To evaluate the performance of the proposed method, several experiments have been conducted based on 10-fold cross validation over real-world data sets. Experimental results show that the proposed method is superior to the state-of-the-art competing methods regarding applied evaluation metrics.
    کلید واژگان
    Top-k recommender systems
    Incomplete data
    Ensemble learning
    H.6.3.1. Classifier design and evaluation

    شماره نشریه
    3
    تاریخ نشر
    2019-07-01
    1398-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Faculty of computer engineering and information technology, Sadjad University of Technology, Mashhad, Iran.
    Faculty of computer engineering and information technology, Sadjad University of Technology, Mashhad, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2019.7026.1830
    http://jad.shahroodut.ac.ir/article_1452.html
    https://iranjournals.nlai.ir/handle/123456789/294918

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب