• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

    (ندگان)پدیدآور
    Kosari, M.Teshnehlab, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.438 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Review Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain identification fractional-order chaotic systems where conventional derivation is replaced by a fractional one with the help of a non-integer derivation. This operator is itself approximated by a N-dimensional system composed of an integrator and a phase-lead filter. A hybrid particle swarm optimization (PSO) and genetic algorithm (GA) method has been applied to estimate the parameters of approximated nonlinear fractional-order chaotic system that modeled by a state-space representation. The feasibility of this approach is demonstrated through identifying the parameters of approximated fractional-order Lorenz chaotic system. The performance of the proposed algorithm is compared with the genetic algorithm (GA) and standard particle swarm optimization (SPSO) in terms of parameter accuracy and cost function. To evaluate the identification accuracy, the time-domain output error is designed as the fitness function for parameter optimization. Simulation results show that the proposed method is more successful than other algorithms for parameter identification of fractional order chaotic systems.
    کلید واژگان
    : Parameter identification
    chaotic system
    Particle Swarm Optimization
    Genetic Algorithm
    Fractional calculus
    F.2.7. Optimization

    شماره نشریه
    2
    تاریخ نشر
    2018-07-01
    1397-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Electrical Engineering-Control Department, K.N.Toosi University of Technology, Tehran, Iran.
    Faculty of Electrical Engineering-Control Department, K.N.Toosi University of Technology, Tehran, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2017.4670.1553
    http://jad.shahroodut.ac.ir/article_1061.html
    https://iranjournals.nlai.ir/handle/123456789/294895

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب