• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Geometry Preserving Kernel over Riemannian Manifolds

    (ندگان)پدیدآور
    Sadatnejad, Kh.Shiry Ghidari, S.Rahmati, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.106 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. Projection to tangent spaces truly preserves topology along radial geodesics. In this paper, we propose a method for extrinsic inference on Riemannian manifold using kernel approach while topology of the entire dataset is preserved. We show that computing the Gramian matrix using geodesic distances, on a complete Riemannian manifold with unique minimizing geodesic between each pair of points, provides a feature mapping which preserves the topology of data points in the feature space. The proposed approach is evaluated on real datasets composed of EEG signals of patients with two different mental disorders, texture, visual object classes, and tracking datasets. To assess the effectiveness of our scheme, the extracted features are examined by other state-of-the-art techniques for extrinsic inference over symmetric positive definite (SPD) Riemannian manifold. Experimental results show the superior accuracy of the proposed approach over approaches which use kernel trick to compute similarity on SPD manifolds without considering the topology of dataset or partially preserving topology.
    کلید واژگان
    Kernel trick
    Riemannian manifold
    Geometry preservation
    Gramian matrix
    H.6. Pattern Recognition

    شماره نشریه
    2
    تاریخ نشر
    2018-07-01
    1397-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Computer Engineering & Information Technology, Amirkabir University of Technology, Tehran, Iran.
    Computer Engineering & Information Technology, Amirkabir University of Technology, Tehran, Iran.
    Computer Engineering & Information Technology, Amirkabir University of Technology, Tehran, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2017.1000
    http://jad.shahroodut.ac.ir/article_1000.html
    https://iranjournals.nlai.ir/handle/123456789/294891

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب