• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tuning Shape Parameter of Radial Basis Functions in Zooming Images using Genetic Algorithm

    (ندگان)پدیدآور
    Esmilizaini, A.MLatif, A.MBarid Loghmani, Gh.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.371 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Review Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Image zooming is one of the current issues of image processing where maintaining the quality and structure of the zoomed image is important. To zoom an image, it is necessary that the extra pixels be placed in the data of the image. Adding the data to the image must be consistent with the texture in the image and not to create artificial blocks. In this study, the required pixels are estimated by using radial basis functions and calculating the shape parameter c with genetic algorithm. Then, all the estimated pixels are revised based on the sub-algorithm of edge correction. The proposed method is a non-linear method that preserves the edges and minimizes the blur and block artifacts of the zoomed image. The proposed method is evaluated on several images to calculate the optimum shape parameter of radial basis functions. Numerical results are presented by using PSNR and SSIM fidelity measures on different images and are compared to some other methods. The average PSNR of the original image and image zooming is 33.16 which shows that image zooming by factor 2 is similar to the original image, emphasizing that the proposed method has an efficient performance.
    کلید واژگان
    Image zooming
    Radial basis function
    Genetic Algorithm
    Interpolation
    H.3.15.3. Evolutionary computing and genetic algorithms

    شماره نشریه
    2
    تاریخ نشر
    2018-07-01
    1397-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Applied Mathematics, Yazd University, Yazd, Iran.
    Department of Computer Engineering, Yazd University, Yazd, Iran.
    Department of Applied Mathematics, Yazd University, Yazd, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2017.4815.1575
    http://jad.shahroodut.ac.ir/article_993.html
    https://iranjournals.nlai.ir/handle/123456789/294885

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب