• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination

    (ندگان)پدیدآور
    Akkasi, A.Varoglu, E.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    941.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracted is naturally imbalanced since chemical entities are fewer compared to other segments in text. In this paper, the class imbalance problem in the context of chemical named entity recognition has been studied and adopted version of random undersampling for NER data, has been leveraged to generate a pool of classifiers. In order to keep the classes' distribution balanced within each sentence, the well-known random undersampling method is modified to a sentence based version where the random removal of samples takes place within each sentence instead of considering the dataset as a whole. Furthermore, to take the advantages of combination of a set of diverse predictors, an ensemble of classifiers trained with the set of different training data resulted by sentence-based undersampling, is created. The proposed approach is developed and tested using the ChemDNER corpus released by BioCreative IV. Results show that the proposed method improves the classification performance of the baseline classifiers mainly as a result of an increase in recall. Furthermore, the combination of high performing classifiers trained using undersampled train data surpasses the performance of all single best classifiers and the combination of classifiers using full data.
    کلید واژگان
    Chemical Named Entity recognition
    Class Imbalance Problem
    Random Undersampling
    Classifier Combination
    H.3.8. Natural Language Processing

    شماره نشریه
    2
    تاریخ نشر
    2019-04-01
    1398-01-12
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Departmen of Computer Engineeringt,Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
    Computer Engineering Department, Eastern Mediterranean University, Famagusta, North Cyprus, Via Mersin 10, Turkey.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2018.5929.1700
    http://jad.shahroodut.ac.ir/article_1269.html
    https://iranjournals.nlai.ir/handle/123456789/294880

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب