• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 8, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 8, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks

    (ندگان)پدیدآور
    Zarezade, M.Nourani, E.Bouyer, Asgarali
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.358 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as instability, low accuracy, randomness, etc. The G-CN algorithm is one of local methods that uses the same label propagation as the LPA method, but unlike the LPA, only the labels of boundary nodes are updated at each iteration that reduces its execution time. However, it has resolution limit and low accuracy problem. To overcome these problems, this paper proposes an improved community detection method called SD-GCN which uses a hybrid node scoring and synchronous label updating of boundary nodes, along with disabling random label updating in initial updates. In the first phase, it updates the label of boundary nodes in a synchronous manner using the obtained score based on degree centrality and common neighbor measures. In addition, we defined a new method for merging communities in second phase which is faster than modularity-based methods. Extensive set of experiments are conducted to evaluate performance of the SD-GCN on small and large-scale real-world networks and artificial networks. These experiments verify significant improvement in the accuracy and stability of community detection approaches in parallel with shorter execution time in a linear time complexity.
    کلید واژگان
    Social networks
    Community Detection
    Boundary Node
    Label Propagation
    D. Data

    شماره نشریه
    2
    تاریخ نشر
    2020-04-01
    1399-01-13
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
    Department of Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
    Department of Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2019.8768.2011
    http://jad.shahroodut.ac.ir/article_1665.html
    https://iranjournals.nlai.ir/handle/123456789/294864

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب