• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 5, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 5, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improved COA with Chaotic Initialization and Intelligent Migration for Data Clustering

    (ندگان)پدیدآور
    Lashkari, M.Moattar, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.286 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages such as fast convergence rate, intelligent operators and simultaneous local and global search which are the motivations behind choosing this algorithm. In the Extended Cuckoo Algorithm, we have enhanced the operators in the classical version of the Cuckoo algorithm. The proposed operator of production of the initial population is based on a Chaos trail whereas in the classical version, it is based on randomized trail. Moreover, allocating the number of eggs to each cuckoo in the revised algorithm is done based on its fitness. Another improvement is in cuckoos' migration which is performed with different deviation degrees. The proposed method is evaluated on several standard data sets at UCI database and its performance is compared with those of Black Hole (BH), Big Bang Big Crunch (BBBC), Cuckoo Search Algorithm (CSA), traditional Cuckoo Optimization Algorithm (COA) and K-means algorithm. The results obtained are compared in terms of purity degree, coefficient of variance, convergence rate and time complexity. The simulation results show that the proposed algorithm is capable of yielding the optimized solution with higher purity degree, faster convergence rate and stability in comparison to the other compared algorithms.
    کلید واژگان
    Clustering
    k_Means algorithm
    Cuckoo Optimization Algorithm (COA)
    Chaotic Function
    Migration
    H.6.4. Clustering

    شماره نشریه
    2
    تاریخ نشر
    2017-07-01
    1396-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Computer Engineering, Ferdows Branch, Islamic Azad University, Ferdows, Iran.
    Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2016.783
    http://jad.shahroodut.ac.ir/article_783.html
    https://iranjournals.nlai.ir/handle/123456789/294856

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب