نمایش مختصر رکورد

dc.contributor.authorKarimian, F.en_US
dc.contributor.authorBabamir, S. M.en_US
dc.date.accessioned1399-07-09T06:04:09Zfa_IR
dc.date.accessioned2020-09-30T06:04:09Z
dc.date.available1399-07-09T06:04:09Zfa_IR
dc.date.available2020-09-30T06:04:09Z
dc.date.issued2017-07-01en_US
dc.date.issued1396-04-10fa_IR
dc.date.submitted2016-04-29en_US
dc.date.submitted1395-02-10fa_IR
dc.identifier.citationKarimian, F., Babamir, S. M.. (2017). Evaluation of Classifiers in Software Fault-Proneness Prediction. Journal of AI and Data Mining, 5(2), 149-167. doi: 10.22044/jadm.2016.825en_US
dc.identifier.issn2322-5211
dc.identifier.issn2322-4444
dc.identifier.urihttps://dx.doi.org/10.22044/jadm.2016.825
dc.identifier.urihttp://jad.shahroodut.ac.ir/article_825.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/294845
dc.description.abstractReliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one can classify software modules into fault-prone and non-fault-prone ones. To make such a classification, we investigated into 17 classifier methods whose features (attributes) are software metrics (39 metrics) and instances (software modules) of mining are instances of 13 datasets reported by NASA. <br /> However, there are two important issues influencing our prediction accuracy when we use data mining methods: (1) selecting the best/most influent features (i.e. software metrics) when there is a wide diversity of them and (2) instance sampling in order to balance the imbalanced instances of mining; we have two imbalanced classes when the classifier biases towards the majority class. Based on the feature selection and instance sampling, we considered 4 scenarios in appraisal of 17 classifier methods to predict software fault-prone modules. To select features, we used Correlation-based Feature Selection (CFS) and to sample instances we did Synthetic Minority Oversampling Technique (SMOTE). Empirical results showed that suitable sampling software modules significantly influences on accuracy of predicting software reliability but metric selection has not considerable effect on the prediction.en_US
dc.format.extent1859
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of AI and Data Miningen_US
dc.relation.isversionofhttps://dx.doi.org/10.22044/jadm.2016.825
dc.subjectSoftware fault predictionen_US
dc.subjectClassifier performanceen_US
dc.subjectFeature Selectionen_US
dc.subjectData samplingen_US
dc.subjectSoftware metricen_US
dc.subjectC.3. Software Engineeringen_US
dc.titleEvaluation of Classifiers in Software Fault-Proneness Predictionen_US
dc.typeTexten_US
dc.typeResearch/Original/Regular Articleen_US
dc.contributor.departmentDepartment of Computer Engineering, University of Kashan, Kashan, Iran.en_US
dc.contributor.departmentDepartment of Computer Engineering, University of Kashan, Kashan, Iran.en_US
dc.citation.volume5
dc.citation.issue2
dc.citation.spage149
dc.citation.epage167


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد