• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 5, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 5, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of Classifiers in Software Fault-Proneness Prediction

    (ندگان)پدیدآور
    Karimian, F.Babamir, S. M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.816 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one can classify software modules into fault-prone and non-fault-prone ones. To make such a classification, we investigated into 17 classifier methods whose features (attributes) are software metrics (39 metrics) and instances (software modules) of mining are instances of 13 datasets reported by NASA. However, there are two important issues influencing our prediction accuracy when we use data mining methods: (1) selecting the best/most influent features (i.e. software metrics) when there is a wide diversity of them and (2) instance sampling in order to balance the imbalanced instances of mining; we have two imbalanced classes when the classifier biases towards the majority class. Based on the feature selection and instance sampling, we considered 4 scenarios in appraisal of 17 classifier methods to predict software fault-prone modules. To select features, we used Correlation-based Feature Selection (CFS) and to sample instances we did Synthetic Minority Oversampling Technique (SMOTE). Empirical results showed that suitable sampling software modules significantly influences on accuracy of predicting software reliability but metric selection has not considerable effect on the prediction.
    کلید واژگان
    Software fault prediction
    Classifier performance
    Feature Selection
    Data sampling
    Software metric
    C.3. Software Engineering

    شماره نشریه
    2
    تاریخ نشر
    2017-07-01
    1396-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Computer Engineering, University of Kashan, Kashan, Iran.
    Department of Computer Engineering, University of Kashan, Kashan, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2016.825
    http://jad.shahroodut.ac.ir/article_825.html
    https://iranjournals.nlai.ir/handle/123456789/294845

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب