• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 7, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

    (ندگان)پدیدآور
    Hasheminejad, Seyed M. H.Sarvmili, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.661 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for using data mining in educational systems. In this paper, we propose a novel rule-based classification method, called S3PSO (Students' Performance Prediction based on Particle Swarm Optimization), to extract the hidden rules, which could be used to predict students' final outcome. The proposed S3PSO method is based on Particle Swarm Optimization (PSO) algorithm in discrete space. The S3PSO particles encoding inducts more interpretable even for normal users like instructors. In S3PSO, Support, Confidence, and Comprehensibility criteria are used to calculate the fitness of each rule. Comparing the obtained results from S3PSO with other rule-based classification methods such as CART, C4.5, and ID3 reveals that S3PSO improves 31 % of the value of fitness measurement for Moodle data set. Additionally, comparing the obtained results from S3PSO with other classification methods such as SVM, KNN, Naïve Bayes, Neural Network and APSO reveals that S3PSO improves 9 % of the value of accuracy for Moodle data set and yields promising results for predicting students' final outcome.
    کلید واژگان
    Educational Data Mining
    Particle Swarm Optimization
    Rule-Based Classification
    H.3.2.4. Education

    شماره نشریه
    1
    تاریخ نشر
    2019-01-01
    1397-10-11
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Computer Engineering, Alzahra University, Tehran, Iran.
    Department of Computer Engineering, Alzahra University, Tehran, Iran

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2018.5506.1662
    http://jad.shahroodut.ac.ir/article_1131.html
    https://iranjournals.nlai.ir/handle/123456789/294782

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب