• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 6, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images

    (ندگان)پدیدآور
    Hoseini, Seyyed A.Kabiri, P.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.256 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4 meters. The system can be used in unknown environments with no additional information available from the outside world except in the first two images that are used for initialization. Pose estimation is performed using only natural feature points extracted and matched in successive images. In wide-baseline images unlike consecutive frames of a video stream, displacement of the feature points in consecutive images is notable and hence cannot be traced easily using patch-based methods. To handle this problem, a hybrid strategy is employed to obtain accurate feature correspondences. In this strategy, first initial feature correspondences are found using similarity of their descriptors and then outlier matchings are removed by applying RANSAC algorithm. Further, to provide a set of required feature matchings a mechanism based on sidelong result of robust estimator was employed. The proposed method is applied on indoor real data with images in VGA quality (640×480 pixels) and on average the translation error of camera pose is less than 2 cm which indicates the effectiveness and accuracy of the proposed approach.
    کلید واژگان
    Camera Pose Estimation
    Feature extraction
    Feature Correspondence
    Bundle Adjustment
    Depth Estimation
    H.3.2.2. Computer vision

    شماره نشریه
    1
    تاریخ نشر
    2018-03-01
    1396-12-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.
    Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2017.976
    http://jad.shahroodut.ac.ir/article_976.html
    https://iranjournals.nlai.ir/handle/123456789/294764

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب