Identities in $3$-prime near-rings with left multipliers
(ندگان)پدیدآور
Ashraf, MohammadBOUA, Abdelkarim
نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $mathcal{N}$ be a $3$-prime near-ring with the center$Z(mathcal{N})$ and $n geq 1$ be a fixed positive integer. Inthe present paper it is shown that a $3$-prime near-ring$mathcal{N}$ is a commutative ring if and only if it admits aleft multiplier $mathcal{F}$ satisfying any one of the followingproperties: $(i):mathcal{F}^{n}([x, y])in Z(mathcal{N})$, $(ii):mathcal{F}^{n}(xcirc y)in Z(mathcal{N})$,$(iii):mathcal{F}^{n}([x, y])pm(xcirc y)in Z(mathcal{N})$ and $(iv):mathcal{F}^{n}([x, y])pm xcirc yin Z(mathcal{N})$, for all $x, yinmathcal{N}$.
کلید واژگان
$3$-Prime near-ringderivations
commutativity
left multiplier
شماره نشریه
1تاریخ نشر
2018-06-011397-03-11
ناشر
University of Guilanسازمان پدید آورنده
Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh 202002, IndiaDepartment of Mathematics, Physics and Computer Science, Sidi Mohammed Ben Abdellah University,Taza, Morocco
شاپا
2345-39312382-9877



