• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Chemical and Petroleum Engineering
    • Volume 53, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Chemical and Petroleum Engineering
    • Volume 53, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine

    (ندگان)پدیدآور
    Dehghani Kiadehi, AfshinMehdizadeh, BahmanMovagharnejad, kamyar
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    735.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation state-based models, i.e. SRK-EOS and PR-EOS and four empirical equations, i.e. Whitson, Standing, Wilson and Ghafoori et al. Compared to the experimental data, the average relative deviations (ARD) of bubble pressure prediction for these equations were obtained to be 14%, 29%, 66%, 30%, 38%, and 11%, respectively. The best semi-empirical equation has an ARD of about 11% while, the ANN and LS-SVM models have an ARD of 8% and 4.68%, respectively. Thus, it can be concluded that generally, these soft computing models appear to be more accurate than the empirical and EOS based methods for prediction of bubble point pressure of reservoir fluids.
    کلید واژگان
    Artificial Neural Network
    Bubble pressure
    empirical correlations
    Genetic Algorithm
    reservoir fluids
    Support vector machine

    شماره نشریه
    2
    تاریخ نشر
    2019-12-01
    1398-09-10
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
    Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
    Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran

    شاپا
    2423-673X
    2423-6721
    URI
    https://dx.doi.org/10.22059/jchpe.2019.266793.1251
    https://jchpe.ut.ac.ir/article_72598.html
    https://iranjournals.nlai.ir/handle/123456789/284405

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب