• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Chemical and Petroleum Engineering
    • Volume 49, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Chemical and Petroleum Engineering
    • Volume 49, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Artificial Neural Network Model for Predicting the Pressure Gradient in Horizontal Oil–Water Separated Flow

    (ندگان)پدیدآور
    Azizi, SadraKarimi, Hajir
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    815.6کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In this study, a three–layer artificial neural network (ANN) model was developed to predict the pressure gradient in horizontal liquid–liquid separated flow. A total of 455 data points were collected from 13 data sources to develop the ANN model. Superficial velocities, viscosity ratio and density ratio of oil to water, and roughness and inner diameter of pipe were used as input parameters of the network while corresponding pressure gradient was selected as its output. A tansig and a linear function were chosen as transfer functions for hidden and output layers, respectively and Levenberg–Marquardt back–propagation algorithm were applied to train the ANN. The optimal topology of the ANN was achieved with 16 neurons in hidden layer, which made it possible to estimate the pressure gradient with a good accuracy (R2=0.996 &AAPE=7.54%). In addition, the results of the developed ANN model were compared to Al–Wahaibi correlation results (with R2=0.884&AAPE=17.17%) and it is found that the proposed ANN model has higher accuracy. Finally, a sensitivity analysis was carried out to investigate the relative importance of each input parameter on the ANN output. The results revealed that the pipe diameter (D) has the most relative importance (24.43%) on the ANN output, while the importance of the other parameters is nearly the same.
    کلید واژگان
    Liquid–liquid flow
    Pressure gradient
    Oil–water separated flow
    Artificial Neural Network

    شماره نشریه
    2
    تاریخ نشر
    2015-12-01
    1394-09-10
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Chemical Engineering, Yasouj University, Yasouj, I. R. Iran
    Department of Chemical Engineering, Yasouj University, Yasouj, I. R. Iran

    شاپا
    2423-673X
    2423-6721
    URI
    https://dx.doi.org/10.22059/jchpe.2015.1808
    https://jchpe.ut.ac.ir/article_1808.html
    https://iranjournals.nlai.ir/handle/123456789/284375

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب